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Abstract—The emergence of gencral stationary-wave solutions, exemplified by Rayleigh surface
waves and Stoneley interfuce waves, is taken as a criterion for the onset of localization in the presence
of geometrical features such as free boundaries and interfaces. The stationary-wave solutions yield
the possible oricntations of the emerging shear bands. The influence of interfaces in crystalline solids
and of free boundaries in pressure-sensitive frictional materials is investigated within this general
framework. It is found that grain boundaries in polycrystals can act as both barriers to, and as
sources of, shear bands. The analysis of pressure-sensitive frictional materials reveals a mismatch
in orientation between the shear bands in the interior and on the boundary of the solid. The
implications of this misorientation for the global behavior of specimens tested in plane strain
compression are discussed.

1. INTRODUCTION

While it is clear that interfaces and free surfaces play an important role in the development
of localized deformation patterns, the nature of that role depends on specific circumstances.
For example, the mismatch in mechanical propertics at an interface can induce stress
and strain concentrations that act as initiation sites for localization, Conversely, internal
interfaces, e.g. grain boundaries, can act as barriers to localizations that originate in
bulk matcrial. The orientation of localized deformation bands is often observed, both in
experiment and in numerical simulations, to change when free boundarics are approached.
The effeet of this orientation change on the overall response remains to be cluarified.

Here, attention is restricted to time- and rate-independent materials and localization
is associated with vanishing wave speeds. The correspondence between stationary body
waves and bulk localization has long been appreciated (Hadamard, 1903 Hill, 1962;
Biot, 1963a; Mundel, 1966 Rice, 1977). More recently, the broader connection between
stationary waves, stability and well-posedness of boundary value problems has received
considerable attention (Simpson and Spector, 1987, 1989; Dowaikh and Ogden, 1990).
What is perhaps not so widely appreciated is that a variety of stationary waves can be
interpreted in terms of bands of localized deformation. When viewed this way, results on
stationary Rayleigh waves (free surface waves) and on stationary Stoneley waves (interface
waves) give a perspective on the interaction between shear bands, free surfaces and inter-
faces. A characteristic direction is associated with each type of stationary wave and this
characteristic direction defines the orientation of the localization.

We present a formulation of stationary body, Rayleigh and Stoneley waves that stresses
the relation to localization and that emphasizes the uniformity of the analysis for each type
of wave. The circumstances considered are such that no characteristic geometric length
enters the problem formulation. Hence, the wavelength of the stationary waves is un-
determined. Since this wavelength can then be arbitrarily short, the critical condition for
stationary waves can be regarded as a local criterion. Specific results are given for two cases.
In onc case, a plane strain crystal model is used to explore, within the stationary wave
framework, the role of crystal misorientation across grain boundaries in precipitating shear-
band development or in acting as a barrier to shear-band propagation. In the other case,
shear-band orientation changes at free surfaces are analyzed for pressure-sensitive dilational
solids. The possible large cffect of these orientation changes on the overall response is
discussed.
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2. GOVERNING EQUATIONS
We consider deformations that take the material point initially at x to X. where both

x and X are referred to a fixed Cartesian frame. The displacement vector u and the defor-
mation gradient F are defined by

u=f-x F=—. n

In terms of the unsymmetric nominal stress tensor, t, which is related to the traction, T,
transmitted across a material element of area having orientation v in the reference con-
figuration by T = v t, balance of linear momentum requires

&
Ly =p ar (2)

B

where p is the mass density of the body in the reference configuration and ( ), denotes
partial differentiation with respect to x,. Writing (2) in rate form gives

. v,
L = o’"él“:i (3)

where (1) denotes differentiation with respect to time and r, = . Similarly, traction-free
boundary conditions can be cxpressed in rate form as

vli'[ = 0' (4)

Throughout subscquent discussions, the material is modelled as rate independent and
the constitutive relation is expressed as

ty = Kyl = Kt (5

For elastic-plastic solids exhibiting piccewise-linear behavior, the neighborhood of the
current state in strain rate space can be divided into a number of cones, in each of which a
linear relationship between stress rate and strain rate holds. For example, the constitutive
relation for the classical clastic-plastic solid is piccewise lincar with two branches ; one for
plastic loading and the other for elastic unloading. However, here attention is confined to
incrementally-linear solids for which the tensor of moduli K is fixed by the current state.
The specific constitutive equations considered are expressed as a relation between some
objective rate of the symmetric Cauchy stress, o, or Kirchhoff stress, ¢, and the rate of
deformation tensor, d. The Cauchy and Kirchhoff stresses are related to t through

f, = Fy ‘Tkl = JF; ‘G'k,’ 6)
where J = det(F) is the ratio of the volume of a material element in the current configuration

to its volume in the reference configuration, ( )~' denotes the inverse, the Cartesian
components of d are given by

i = 5(1:‘;"*‘1,:) Q)
and
1:';‘ = .ikFa't-}‘ (8)

are the spatial velocity gradients.
For an incompressible solid. the constraint
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b = t4es =0 9

must be satisfied. The hydrostatic stress then enters the formulation as a Lagrange multiplier

and the constitutive relation only specifies the deviatoric response. Accordingly. (5) and (3)
become. respectively.

i:, = Kt + P, (10)

and

. . v
Liivpi=p (-,':/- (1

Constitutive relations for plastic solids are most conveniently expressed in terms of a
relation between an objective rate of Cauchy or Kirchhoff stress and the rate of deformation
tensor. Standard kinematic identities can then be used to express the constitutive relation
in the form (5) or (10). For example, if L denotes the moduli relating the convected (also
known as the Oldroyd or Lie) derivative of Kirchhoff stress to d, then, with the current
configuration as reference, the Cartesian components of K and L are related by

I\—ukl = L:l/k + rlk‘$ll‘ ( I 2)

1 STATIONARY WAVES AND LOCALIZATION

Consider a homogencous solid subject to boundary conditions that are consistent with
continuing homogencous deformations, The response to small wave disturbances about
this state can be investigated for an incrementally-lincar solid having moduli corresponding
to the active moduli for continued homogencous deformation. For clastic-plastic solids for
which K, = K, this is the lincar comparison solid of Hill (1958). For solids lacking this
symmetry, the lincar comparison solid provides an upper bound (Rancicki and Bruhns,
1981). For piccewise-lincar elastic-plastic behavior and with the current state involving
“total loading™, in the sense that each plastic branch, once activated, remains active, the
maoduli of the lincar comparison solid are thosc for continued total loading.

For wave solutions superposed on some current state, the relation between a solution
for an incrementally-lincar solid and the corresponding solution for the underlying elastic—-
plastic solid is problematical. We presume that the behavior of the linear comparison solid
reflects that of the underlying clastic-plastic solid, but the connection is not pursued here.
However, it should be noted that at least for solids with this symmetry of the tangent moduli,
the critical condition for a vanishing wave speed corresponds to the critical condition for
bifurcation.

As is well known, the existence of stationary body wave disturbances, signals the onset
of bulk localization (Hadamard, 1903 ; Hill, 1962 ; Biot, 19634 ; Mandel, 1966 ; Rice, 1977).
The aim here is to explore the effects of boundaries and interfaces on localization by
considering conditions for stationary waves where boundary conditions do play a role. In
particular, we consider stationary Rayleigh waves along stress-free boundarices and station-
ary Stoneley waves along interfaces. The significance of stationary waves stems from their
role in signifying the transition from stability to instability : when all possible wave speeds
¢ are such that ¢* > 0, then there is stability with respect to small disturbances ; when ¢* < 0
for some waves, there is divergence type growth, as discussed by Rice (1977). In addition,
when the incremental moduli fail to be symmetric, the governing equations can admit
complex solutions for ¢* that correspond to flutter-type instabilitics.

Several connections between the stationary-wave characterization of material insta-
bility and other alternative theorics are noteworthy. Localization in the rate-independent
solid can be thought of as a local bifurcation whereby two incremental solutions become
possible : one having continuous deformation gradients ; the other exhibiting a discontinuity
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in the deformation gradients. Discontinuities in the deformation gradients can only occur
along characteristic directions. Therefore, the onset of localization coincides with the loss
of ellipticity of the incremental equations. Consequently, the boundary value problem
becomes ill-posed following localization.

A problem may become ill-posed. however, while the incremental field equations
remain elliptic, as a consequence of the failure of the complementing condition at the
boundary. Thompson (1969) and Benallal er ¢/, (1989) have noted that the failure of the
complementing condition is equivalent to the existence of stationary Rayleigh surface
waves. An analogous condition for an ill-posed problem that arises in cases where interfaces
are present is the existence of stationary Stoneley waves. Similar to the localization
condition, the stationary Rayleigh and Stoneley wave conditions determine the orientation
of shear bands intersecting free surfaces and interfaces, respectively. In cases where the
equations remain elliptic. the stationary wave analysis determines the length of decay of
the surface and interfacial modes. Our stationary wave analyses are related to the surface
instabilities investigated by Biot (1963b) and Hutchinson and Tvergaard (1980), to the
short wavelength limit of the bifurcation solution obtained by Hill and Hutchinson (1975)
for plane strain, by Triantafyllidis (1980) in pure bending for solids obeying normality and
by Needleman (1979) for plane strain and for solids where the symmetry K, = K, is
lacking, and to the interface instabilitics analyzed by Biot (1963c).

Depending on boundary conditions and material constitutive behavior, long-wave-
length diffuse modes can become available for finite bodies prier to the onset of localization.
In such situations, the stationary wave analysis may, as noted above, correspond to a short-
wavelength limit. However, the short-wavelength limit of finite specimen bifurcations and
the local stationary wave analysis may yield different results. A notable example is the
short-wavelength limit of the diffuse bifurcation solutions of Needleman (1979) in the
hyperbolic regime. From these solutions it is concluded that bifurcation into a sufliciently-
short wavelength mode s possible as soon as the hyperbolic regime is entered, that is
immediately after localization in the bulk. By contrast, our local stationary wave analysis
predicts that focalization in the bulk may precede localization at the surfuce by a finite
amount in frictional solids. A closer inspection, however, reveals that the two analyses need
not be equivalent. Thus, the diffuse bifurcation solutions of Needieman (1979) combine
modes emanating from both sides of the specimen, whereas our local analysis considers
modes about one surface only, i.e. corresponds to a semi-infinite solid. Furthermore, in the
hyperbolic regime the short-wavelength limit does not reduce to the semi-infinite solid case,
since the two surfaces of the solid, no matter how distant, always interact. Because the
solution space in the diffuse bifurcation analysis is lurger than that for the local analysis,
the former necessarily predicts critical conditions for localization which precede the local
conditions.

Body wares
The wave solutions are written in the form

v; = A; exp [ilh,x, —ret)] (13)

where i = \/;L x = k|, and the components of k can be complex. Substituting (13) into
(3) and using (5) with incremental lincarity gives

AlkkktKukl = “I"\:I"JA (i4)
!

after canceling the common factor exp [i(k,x, —xct)]. For stationary waves, ¢ = 0, (14)
becomes

Alkkk,-K,-Jk( = l"{]lA( = 0 (lS)

which admits a non-trivial solution when
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det (M) =0. (16)

Writing k = wn. real solutions to (15) and (16) give the condition for localization with
characteristic directions defined by n, which is the band normal. For a given deformation
history. the orientation n giving the earliest localization is of primary interest. Since no
boundary conditions are imposed. the stationary waves obtained from (15) and (16) pertain
to an infinite solid.

Rayvleigh wares
Let the solid extend over the half-space x, > 0. and be free of tractions on the boundary
x, = 0. Consider Rayleigh wave solutions of the type

v, = A, exp [itkex, —xct)] (17

where, now, x° = ki+ki. For these solutions to decay exponentially into the body, the
condition

Tk, 20 (18)

needs to be satisfied. Inserting (17) into (3) we obtain (14).

We now look for stationary-wave solutions with ¢ = 0. Under these conditions, (14)
reduces to (15), which has non-trivial solutions if (16) is satisfied. Note, however, that &,
may now be complex, due to the one-sided character of the solution. Assume that for fixed
K there are three complex solutions of (14), say kY, « =1, 2, 3. lying on the right-half
complex planc. Let A7, « = 1, 2, 3, be the corresponding amplitudes. Thus, the genceral
form of the solution is

Al
v, =Y A exp (i x, —wMen)]. (19

= |
Furthermore, the amplitudes A” must be compatible with (15). Thus, if ¢f* is used to

denote the null eigenvector of the acoustic tensor K, kA", then the amplitude vectors
must be of the form

AP = AR (20)

for some scalar amplitudes A™. Finally, the traction-free boundary conditions (4), with
v, = 0,,, furnish the supplementary conditions

k]
Y [KiukiMgi?]1A® = 0. 2n

1=
This is a system of three equations with matrix of cocfficients
ﬁl,, = Kl,k/k;:”‘{;n- (22)
For (21) to have non-trivial solutions, the condition
det (M) =0 (23)

must be satisfied. The localization orientations are specified by the unit vectors n™ pointing
in the direction of #¢ (k™).

SAS 28:7-¢
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Stoneley wares
Next we consider two dissimilar solids each occupying a half-space and bonded along
the plane x, = 0. Consider Stoneley wave solutions of the type

v = A exp [ithi i —w*en)], v = A exp [i(ke xi — K ct)] 29)

where ()* and ()~ denote the two sides of the interface. Here we write
(k*)? = (k¥)*+(k3)". For these solutions to decay exponentially into the body, the
conditions

Imki <0, Imki 20 (25)

need to be satisfied.
We now look for stationary wave solutions with ¢ = 0. Substituting the stationary
form of (24) into (3) results in

ATk Ky =0, Arkik7 Ky =0 (26)
which admit non-trivial solutions provided that
det [A¢ k! K] = 0, det [k7 k7 K] = 0. 27

As in the case of surface waves, kf may now be complex, due to the one-sided character
of the solutions. Assume that for fixed x there are six complex solutions of (27), say &£,
a = 1, 2, 3, compatible with (25). Let A%, a = 1, 2, 3, be the corresponding amplitudes.
Then, the gencral form of the solution is

1

pt= Y AP exp [kt - Een)]. (28)

2|
Furthermore, the amplitudes A4/ must be consistent with (26). Let ¢” £ be the null eigen-

vector of the acoustic tensors K54 A%, Then, the amplitude vectors must be of the
form

APE = APty 29)

The relevant boundary conditions are continuity of velocity and traction rate at each
point along the interface. Continuity requires

ki =k

oy
(XN

o k3 =47 (30

which in turn gives k= = k¥, Using (29), the boundary conditions at the interface take the
form

Z}: q,(a)-A(z)— = i ql(:)o-A(zH»

1= | x - |

3 3
Z [Kf,-uki"‘q}”']/i""= Z [K,*,,,,k}(”*qﬁ”*]A“”. &1}

x - | aw |

This is a system of six equations for the six unknowns 4+, The matrix of coefficients of
this system is given by

(x) ~ {x)+

A[ux =q; ’ M(i-o—))c = —q
A’I:(H-J) = Kf,uki”"llf”". M(i+ Na+H = —KT;HI\'FH‘IVH- (32)
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For (31) to have non-trivial solutions, the matrix of coefficients must necessarily be singular,

ie.

det (M) = 0. (33)

(x) +

The localization orientations are specified by the unit vectors n
of Re (k'™'*).

pointing in the direction

4. STATIONARY WAVES IN PLANE STRAIN FOR INCOMPRESSIBLE SOLIDS
OBEYING NORMALITY

We specialize the general approach in Section 3 to orthotropic solids deforming in
plane strain, with in-plane loading coaxial to the x, and x; directions. so that ¢,; = 0. The
formulation takes a particularly simple form for the case of an incompressible solid,
although incompressibility does necessitate a slight modification to the general framework.
Furthermore, attention is restricted to solids having instantaneous moduli that possess the
symmetries K, = Ki;,. For elastic—plastic solids these symmetries are implied by plastic
normality. i.e. coincidence of the loading and yield surfaces, in work conjugate variables.
Defining 6, = 0, and g, = ;. the tensor of in-plane instantaneous moduli can be written
in the form given by Hill and Hutchinson (1975), where

Kl|ll=ﬂ¢-”| Kll:::ll. K=K =0 (34)
Kiyoy=un, Kuonn=p,—0; Kiya=Kunn=90 (35)
. a . L o
Kipn=p+5 Kon=p—-0, Kyn=p—, (36)
with
T,y = g(d‘. +62)v g = (6| —02)' (37)

Shear-band, surface-wave and interface instabilities have been analyzed for this class
of materials by Hill and Hutchinson (1975), Young (1976) and Steif (1986). The analyses
here illustrate in an explicit fashion the identity of conditions for stationary waves and
those governing the onset of shear banding.

Stationary body waves
The velocities and the hydrostatic stress rate are written in the form

v; = A, exp {itkexe —ket)]  p = if exp [itkex, —rct)]. (38)
Because of the incompressibility constraint, (9), the amplitudes, A4,, must satisfy
Ak, =0. (39)

The condition for stationary body waves is obtained by substituting (38) with ¢ =0
into (11). From (39)

A= —A, = (40)

and with K given by (34) to (36), the two in-plane equilibrium equations become
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]
<

1o Q
e

klf+Alkl: [2#,—;1— 0':] +A,k§ l:#-

:I—-Alkf [;H—

tJi

Kif+ Ak k3| p—2u,—~ (41

21 Q
L
]
<

191 Q

Eliminating f gives

A, {a‘ [;t+ %] +2a*[2p, —u)+ [,u— %:I} =0 42)

where a = &k /k,. For non-trivial solutions to exist, the term in brackets in (42) must vanish.
Real values of a that satisfy (42) give the orientation of stationary body waves. Three
possibilities can be identified ; (i) no real solutions exist ; (ii) two real solutions exist ; and
(iit) four real solutions exist. These are termed by Hill and Hutchinson (1975) the elliptic,
parabolic and hyperbolic regimes, respectively.

Stationary Rayleigh waves

Constder a solid extending over the half-space v, 2 0. with zcro prescribed tractions
along x; = 0. Hence, 6, = 0 and g, = +|a| in the current state. Analogous to (19), we
consider wave solutions of the form:

v, =3 AP exp ik —xen] p=i Y S exp [i(kPx — )] (43)

a=1 - |

where a = 1, 2. Solutions are sought that are periodic in x,, with wavelength 4 = 2r/k,.
Henee, &, is real and £ = &% = k,. Furthermore, since there is nothing in the problem
formulation to sct the wavelength along the free surfuce, all units of length can be normalized
with respect to the wavelength 4.

Define ¢ as the ratio £{"/k,. Then, substituting (43) with ¢ = 0 into the two momen-
tum balance equations and eliminating the pressure term gives:

[a™]? [I‘+ ‘;:I +2[ulx)]2[2;t* —ul+ [;t—- g] = 0. (44)

Equation (44) is simply the term in brackets in (42). When Rayleigh waves arc possible
in the elliptic regime, the four solutions to (44) arc cither a pair of complex conjugates or
pure imaginary numbers. The only two roots that are relevant are those for which the real
partof ik = k,a'” is negative so that the solution decays into the material. The oricntation
of the surface instability is given by #¢ (¢'™). When A« (¢'*') = 0 the localization is orthog-
onal to the free surface. Substituting (43) into the two boundary conditions along x, = 0,

Ruy—aile,+p=0 435)
and
(g—o.]r) 2+ [IH' :] vy =0 (46)

gives
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] [1=0.] (0]} [u+ 2] o
] (Ailli) = O

] a‘:’[4y‘ —H —-O',,,] + [a‘:’]J l:#'*' %
(47)

(u—0.]—[a") [u+

9i Q

91 Q

a(l'[““;_#_am]‘*'[a(”]} I:“+

A non-trivial solution requires the determinant of coefficients in (47) to vanish. In the
elliptic regime, this requires

0l —2uo,+i* [u—a/2
4u, —20, = — . 48
Ha pu—0c/2 H+aj2 (43)

Setting ,,/c = —1/2 and ¢,./0 = /2 in (48) gives the surface wave bifurcation conditions
of Hill and Hutchinson (1975) for tension, and Young (1976) for compression, respectively.
The values of stress and moduli determined from (48) are substituted into (44) to determine
the «'* which give the orientation and decay length relative to the free-surface wavelength
I

Stationary Stoncley waves

We consider two materials characterized by a constitutive relation of the form (13)-
(15) bonded along x, = 0. Quantitics associated with the*material occupying the region
x> 0 are denoted by + and those associated with the material occupying the region

Xy < 0 are denoted by —. In cach half-space, the current state is presumed to be one
of homogencous tension or compression. For x;, >0, 6,, =6/, 0d;; =63 and g\, =0.
Correspondingly, for x, < 0,0,, =a,., 06, =, und a,, = 0. Equilibrium in the current

state requires ¢ =6, = 0a,.
Now solutions are sought of the form

pE = Y AP exp ikt x, +Kax)] (49)
2= |
vy = i — ALK exp [ X, +kax2)] (50)
=
PE=0 S S exp (K x, +Kaxa)] (51)
2 =1

where e (iK1"7) < 0 and #e (iK"7) > 0.
The four coefficients A'?* arc obtuained from the boundary conditions along the
interface which arc

vy (0.x3) = ¢ (0, x2) 03(0.x:) =v37(0.x,) (52)
ih=1I, [h=In (53)

Substituting (49) through (51) into (52) and (53), using the momentum balance equations
for x, > 0 and x, < 0 to eliminate f/™*, and introducing a'** = k% /k,, gives four equa-
tions for the four unknowns A™*, a = 1, 2. These equations can be written in the form
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I 1 —1 -1 A0
a(lw a(ZH- _am- (2) - A<:)+

A’13| A’{}: A[]) 1‘«[34 A[”‘ =0 (54)
My, M, Mg, M, A

where

My = [p* —an]—[u"+0"2)[a'""]? (55)
My, = [p* —an]—[u" +0* 2@ ] (56)
My = —[p~ —o,]1+{u +o 2]l ] &)
My = —[u~ —o]+[u +o 2)[a?" ) (58)
My = [Bpg —p* —on)la "]+ [u* +0 20 "] (59)
My = [duy —p* —an]l@®* [+ [u" +0* /2)[@P* ) (60)
My = [, —p~ o, )@ ]~ [n" +07/2][a" ] (61
My, = —[@p; —p —a llad? ) ={pu +o 2}[d7 1. (62)

Setting the determinant of the matrix of coefficients in (54) cqual to zero in the elliptic
regime implics
R S [ G H (AR R B (AT | &
Vi =" A= () = )AL
V@ =@ A= () = (0 VIR 1) =20 ~a,)]
1y ~20 1= ot =200 e P

+l(1 +6* 2/ () =@ )4+ +0 20/ (k) = (0 ")} J4]K} =0 (63)

where

_ @ =20 \/#*—6*/2]”3[(4#;—2;1") \/w—aﬁ]
R F N e [ RN o

Equilibrium requires o} = o so that both (6 —og ") and (0, —0,;) only involve the
jump in ¢,. Clearly, since the material on both sides of the interface is incompressible, the
critical condition for bifurcation is independent of a superposed hydrostatic stress.

When a solution satisfying (63) is found, the band orientation and decay length are
given by the real and imaginary parts of £ * and £~ for x, > 0 and x, < 0, respectively,
from equations of the form (44), with coefficients given by moduli and stress values for the
appropriate region. In general both the band orientation and decay length differ on each
side of the interface.

5. PLANAR CRYSTALLINE SOLIDS

A specific constitutive relation that gives rise to moduli of the type (34)-(36) is the
planar double-slipping mode! of Asaro (1979), when oriented for symmetric double slip.



Effect of boundaries and interfaces 869

g |

Fig. 1. Schematic of the plane strain model for a single crystal undergoing double slip.

The geometry of this model crystal is shown in Fig. 1. For slip on a single system, the slip
rate. 7, is given by § = £/h, where t is the Schmid resolves shear stress and # is the self-
hardening. For a deformation history of continued symmetric double slip, t and y are
related to the principal stresses and strains by

= o —g:_ 3] v = Ak
T= " sin 2¢) v= sin 26)° (65)

In the second of (65), clastic straining has been neglected and the total strains have been
identilied with the plastic strains.

When the clasticity is taken to be volume preserving and when stress magnitude is
small compared to the crystal’s clastic shear modulus, the incremental moduli have the
form (34) -(36) with (Asaro, 1979 ; Peirce er al., 1982):

_ Mt
e = 5 5in T (29) (66)
§= h(l—¢q)+ (o, ~a,)cos (2¢) (67)

2 cos?® (2¢)

The parameter ¢ describes the latent hardening, i.e. the increase in strength on one system
duc to slip on another. Here, the self-hardening A is described by a power law function of
the accumulated slip y,

l R n-1
h(y) = hy ['—‘! + l] (68)
1Ty

I

where t, is the initial low strength, #,, is the initial hardening and n is the strain hardening
exponent. The latent hardening parameter ¢ is taken to be a specified constant. The material
response depends sensitively on the angle ¢. We confine attention to the range 0 < ¢ < n/4,
where both g, and u are positive, and where there is a yield surface vertex at the current
loading point, with the vertex angle 4¢. At ¢ = n/4, the yield surface is smooth and at
¢ = 0, the yicld cone collapses to a line. Hence, increasing ¢ gives an increasing stiffness
of the response.

This constitutive model has been used in Asaro (1979) and Peirce et al. (1982) to
analyze shear band localizations in ductile single crystals. Peirce et al. (1982) also present
some results on surface instabilities. Here, this constitutive relation is used to investigate
yield surface vertex effects on interface instabilities. The aim is to illustrate the full range
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Fig. 2. Geometry of shear bands at a bicrystal interface.

of possible behaviors rather than to study actual crystal geometrics. As sketched in Fig. 2
a model bicrystal interfuce is considered, where each “*crystal” is taken to be oriented for
symmtric double slip. For purposes of illustration, all the material propertics in cach half-
space are taken to be identical except for the angle between slip systems ¢,

Since the current state is one of homogencous deformation in each crystal and cach
crystal is incompressible, €, = —¢, everywhere. Hence, continuity of displacement com-
ponents across the interface together with homogencity requires both £, and &, to have the
sume value in cach crystal. However, the stress states in the two half-spaces differ becuuse
in general a3 # o, . We focus on circumstances where the loading normal to the interface
is tensile (6, —,) > 0 and ¢ < 45",

There are three possibilities : (i) a shear band loculization occurs first in x; > 0; (i) a
shear band localization occurs first in x; < 0; and (iti) a localized interface instability
occurs first. In the first two circumstances, because of the inhomogeneity in properties, the
localization is at least initially confined to one half-space. Hence, the interface acts as a
barrier to a localization that initiates in the bulk. In the third case, the interface acts as the
initiation site for the instability.

Regimes illustrating these three possibilities can be distinguished in Fig. 3 where
ho/ta = 10,7 = 0.3 and ¢ = 1. The slip system angle ¢ is fixed at 15" in x; > 0 and variable
in x, < 0. The critical value of ¢ = £, —&, at which various stationary waves are possible is
plotted against A¢ = ¢p(x, > 0) —p(x, < 0). When the material is nearly uniform, i.c.

0.8
~
“
0.4
0.3
— — E/H, x>0
«-=- E/H, 21€0 0.2}

- [nterface Instability

30 -25 -20 -15 -16 -5 0 5 10 15
Ad (Degrees)
Fig. 3. The critical strain for bulk and interfacial localization as a function of the misorientation
across the bicrystal interfuce. ¢ is fixed at 15 forx, > 0. M/t = 10, =03and ¢ = 1.
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Fig. 4. The band orientation for bulk and interfacial localization as a function of the misorientation

across the bicrystal interface. @ is fixed at IS for v, > 0. hy/ry = 10, n = 0.3 and ¢ = |. When the

interface instability is critical the different band orientations on the two sides of the interface are
shown.

Ap = 0, the behavior is like that for a homogencous solid. Bulk localization occurs at nearly
the same critical strain in both half-spaces and the interface plays a negligible role. For A¢
near =307, ¢ " is ncar 45, which gives a very stiff response in v, < 0. In this regime, bulk
localization occurs in the half-space vy > 0 and the interface acts as a barrier to localization,
In the remaining range of A¢ an interface instability precedes bulk tocalization in cither
half-space. In the limit as A = 157, ¢~ — 0, and from (66) and (67)., u, /s — 0. Here,
an interface instability can occur at a much smaller strain than does bulk loculization.

The localization orientation is shown as a function of A¢ in Fig. 4. Here, @ measures
the rotation of the band normal from the x; axis, as shown in Fig. 2. For any given critical
strain, band orientations of both + @ and — @ occur. The dashed lines in Fig. 4 show the
oricntation of bulk shear bands in each of the two half-spaces. The solid lines show the
oricntations associated with the interface instability. For A¢ < 0, the oricntation of the
interface localization in cach half-space differs little from that of the corresponding bulk
localization. However, note that in this regime the interface instability can still give rise to
significantly different band orientations in x; > 0 and x, < 0. When A¢ = -3, the differ-
ence between the localization orientation in x; > 0 and x, < 0 is about 3". This mis-
orientation increases with increasing |A¢| and reaches 127 at A¢p = —25°. For smaller
values of A¢ (larger absolute values), the interface instability is no longer critical. In the
regime where A¢p > 0 and the interfice instability is critical, the localization orientation
angles ©F decrease as A¢ is increased. First for x; < 0 and then on both sides of the
interface, ® = 0. Vanishing @ corresponds to pure imaginary A1 in (49)-(51). which means
that the ficlds simply decay exponentially away from the interfuce, without any oscillating
part,

The (signed) decay length associated with the interface instability, normalized by
the surface wavelength, is plotted against A¢ in Fig. 5. The decay length is given by
s =1/ F e (kP inx, >0and s = 1/ F e (k7)) in x, <0, while the surfacc wave-
length is A = 2a/k,. The longer the decay length the greater the distance the non-uniformity
of deformation associated with the interface instability penetrates into the material. When
the critical strain for the interface instability approaches the critical strain for bulk shear
bands on one side of the interface, the decay length on that side becomes unbounded. For
A¢p < 0. in x, > 0, there is a2 broad range over which s* /i 2 1, the critical strain for the
interface localization., is close to that for bulk shear bands. When © = 0, i.e. when the roots
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Fig. 5. The normalized decay length associated with the interface instability as a function of the

misorientation across the bicrystal interface. ¢ is fixed at 15 for x, > 0. &y/ty = 10, n = 0.3 and

g = 1. 4 is the wavelength along the interface. The different band decay lengths on the two sides of
the interface are shown.
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Fig. 6. The critical strain for bulk and interfacial localization as a function of the misorientation
across the bicrystal interfuce. ¢ is fixed a1 30" for x; > 0. hy/to = W0 n =03 and ¢ = |.

20 25 30

to (44) become pure imaginary, there are two distinet decay lengths for a given value of
A¢; one relatively short and one relatively long.

The value ¢ = 15° was chosen to illustrate a broad range of behavior and not to model
any crystal geometry. The value ¢ = 30” is representative of a certain crystal geometry
(Asaro, 1979 ; Peirce et al., 1982), and Fig. 6 shows the critical strain for stationary Stoneley
waves versus A¢ when ¢ is fixed at 30” for x, > 0. In this case, there is only a range of
positive A¢ where an interface localization precedes buik localization. The qualitative
features of the solution in this range are as shown in Figs 4 and 5.

6. FRICTIONAL PRESSURE-SENSITIVE SOLIDS
For a broad class of elastic-plastic solids with smooth yield surfaces, the incremental
moduli L, in (12) are of the form

L., = L%, — (ijmnpmn)(quL;,lk,)
ikt ijki h + L:,,,M P"m QI"J

(69)

during plastic loading, where L, are the incremental elastic moduli, / is a plastic modulus
and P and Q are unit tensors. Restricting attention to plane-strain deformations in the
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plane x, —x,. and assuming the material to be incrementally orthotropic with principal
directions of orthotropy and stress aligned with the coordinate axes, (12) reduces to

Kiyn=Lin+o,. Kyn=Lhxn
Kyspp= Ly +o:, Kpnpg = Lo
Ki;i:=Lin+o. Kon=Lie
Ky =Lizi:+os, Ky =Liss (70)

We shall further assume that the incremental elastic response is isotropic. so that L, can
be expressed in terms of two instantaneous Lamé constants A and g. In these circumstances,
L Prmn and Q,, L; ; are diagonal in the adopted reference frame. Then. it follows that the
in-plane components of Lf,,P.. and @, L5 can be represented in terms of a single
parameter for each tensor. Here, we adopt a parameterization based on the Mohr-Coulomb
model and write the moduli as

1
Ly =A4A+2u— B[;t+(i+u) tan Y[ze+ (A+ p) tan @]
1
Lyjor=i— 5[;¢+(}.+;x) tan Y[ —u+ (A4 ) tan ¢}
!
Liyy=A- 6[—-;:«%—(}.-}-,&) tan g} p+ (A + ) tan @)

= A+4+2u~ Il)[—;¢+(},+;() tan @) —pu+ (A+ ) tan @)

Lisa=n an
where ¢ is the instantancous angle of friction, ¢ the instantancous dilatancy angle, and
D =h+pu+(A+u) tan ¢ tan y. (72)

We note that L,,, # Ly, for solids lacking normality, i.c. when ¢ # ¢. Tacit in (71) is the
assumption that the smallest (most negative) principal stress corresponds to the x, axis, {t
bears emphasis that (71) furnishes a general parameterization of incremental moduli under
the assumptions stated, namely overall orthotropy of the solid, isotropy of the incremental
elastic moduli and smooth yield surfuace. Corner cffects can be accounted for by replacing
the clastic value of u given to L, in (71) by an independent modulus u” € g, but this
possibility is not pursued here. An example of a solid whose constitutive behavior exhibits
corner effects is developed in Section 5.

Stationary body wares
Inserting (71) into the localization condition (16) gives

Ad*+Ba*+C =0 (73)

= —(pu+0:){(A+mu(l +tan ¢)(1 +tan ¢) + (A+2u)h+ Da .}
C=—(u+oa){(A+p)u(l —tan @)(I —tan ¢) + (A +2u)r+ Do, }

Oy—0>
2

= i:;_(_‘ +2(A+pu’ ~ {2(A+u(tan ¢ +tan )~ D(o, —03)}.  (74)
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The elliptic~hyperbolic boundary is defined by the condition B- —4AC = 0, which can be
used to determine the critical value A, of the plastic modulus. If o, and ., are neglected in
(74). it is possible to solve (73) for A explicitly, with the result

he  A+p an v)’ >
= iy tan é—tn ) 7

The corresponding band orientations are

s . e
a(l.2)=i[l'*'([‘m‘/"*'t«m'ﬂ)/-:l ‘ (76)

1 —(tan ¢ +tan y),2

These values are double roots of (73) and define two band orientations symmetrically
disposed relative to the stress axis.

With the interpretation given above to ¢ and . as the instantaneous friction and
dilatancy angles at the current state, (75) generalizes the results of Rudnicki and Rice
(1975) derived for a specific Drucker-Prager-like model. In particular, we note that, under
conditions of lack of normality, ¢ # ¢. localization can occur with positive hardening. As
noted by Rudnicki and Rice (1975), ncglecting the gecometric stress terms in (70) gives
results which are correct to first order in the ratio between the stress components and the
clastic moduli.

Stationary Rayleigh waves

With o, and o, neglected in (70), the critical value of 4 for the emergence of stationary
Rayleigh waves is A, = 0. Thus, boundary shear bands necessarily oceur at the peak stress,
to within first-order terms in the ratio of stress to elastic moduli. In particular, when ¢ # o
and the stress-striin curve is concave-up, so as to give a monotonically decreasing 4,
localization in the bulk of the solid always precedes localization at the boundary. To the
same order of approximation, the orientation « = & jk ; of the surfuce bands may take the
following values

IR L5 LA +< 'ff‘-‘,"»"-’)m (17)
- |_[an|p * “\l—tan ¢

at h.. These correspond to four distinct roots of (73).

Because the stationary Rayleigh waves became available in the hyperbolic regime, the
four roots of (73) are real at A, and, hence, trivially satisfy the decay condition (18).
Solutions can be sought in the form of combinations of two or more¢ of the four admissible
waves as in (19). Here we have confined attention to pairwise combinations of waves. Three
such combinations are found to satisfy (23): (a) ¢'” and «'¥; (b) ¢'" and ¢'* ; and (c) «'"
and a'*. Solution (a) is symmetric about the x, axis, whereas solutions (b) and (¢) are
unsymmetric, Fig. 7. For a plastically incompressible material, ¢ = 0, solution (a) cor-
responds to two bands intersecting the boundary at 45°. In addition, solutions (a) and (c)
cxhibit one band on each side of the x, axis, whereas solution (b) corresponds to two bands
lying on the same side of the x, axis, Fig. 7.

Comparison of (76) and (77) revcals that bands in the bulk and at the surfuce of the
solid are generally misaligned. For pressure-sensitive frictional materials, this misalignment
can have a marked effect on the global response of a solid. Considcr, for example, the case
of a rectangular soil sample tested in plane strain compression, as sketched in Fig. 8a. With
¥ # ¢, shear banding will tend to initiate in the interior of the solid during the ascending
portion of the force-elongation curve, and, at the peak load, will connect to the free
boundary. However, the orientation of the interior and surface shear bands can differ
substantially. For instance, for the plastically-incompressible solid, the symmetric surface
shear bands are at 45° to the axis of loading, whereas the interior shear band can be
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Fig. 7. Geometry of shear bands intersecting a free surfuce.
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Fig. 8. The role of oricntation mismatch between interior and surface shear bands in pressure-
sensitive dilatant materials, (a) Shear bund geometry exhibiting surface kinks. (b) Stress trajectorics
in the plane strain compression test. (¢) Resulting force versus clongation curve.

significantly steeper. Indeed, finite element simulations of the plane strain compression test
in soils invariably exhibit “'kinks™ in the shear bands as they connect to the boundary
(Leroy and Ortiz, 1989, 1990).

As is evident from Fig. 8a. the relative motion of the unloaded blocks is determined
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by the orientation of the surface bands. Because of the orientation mismatch, the bulk
band must necessarily dilate as it shears. In frictional pressure-sensitive materials. for any
substantial dilation to be possible the state of stress must necessarily be on the hydrostatic
tension cap of the flow potential, Fig. 8b. But, because of the pressure-sensitive nature of
yield. the tension cap can only be reached at the expense of a sharp drop in the level of
stress. which is reduced to values of the order of the cohesion of the solid. Fig. 8b.
Consequently. a typical force—elongation diagram has the general form shown in Fig. 8c.
Following an initial hardening stage, a sharp drop in the bearing capacity of the specimen
ensues as the shear band reaches the free surface. thereafter stabilizing at a lower plateau.
This type of behavior has been experimentally observed in soils by Vardoulakis and Graf
(1985). and is also a common occurrence in rocks (Waversik and Brace, 1971) and concrete
(van Mier, 1984).

7. SUMMARY AND DISCUSSION

Here we have argued that the emergence of general stationary wave solutions, exem-
plified by Rayleigh surface waves and Stoneley interface waves, signals the onset of local-
ization, in much the same manner as the existence of stationary body waves is a necessary
condition for localization in the interior of a rate-independent solid. Furthermore, the
stationary-wave solutions yield the possible orientations of the emerging shear bands. For
instance. an investigation of stationary Rayleigh and Stoneley waves has enabled us to
determine critical conditions for the inception of localization at a free boundary and at a
material interface, respectively, and to compute the orientations of the corresponding shear
bands. While these stationary-wave solutions generally correspond to the onsct of an
instability, their shear-band interpretation s restricted to the immediate vicinity of the
surface or interface when they precede bulk localization.

It should be noted that since there is nothing in the present formulation that defines a
length scale, the wavelength of the stationary Rayleigh and Stoneley waves is arbitrary.
Other lengths, i.c. decay lengths into the bulk material, are determined relative to this
wavelength. However, the general framework does carry over Lo circumstances where there
is a4 material characteristic length (Zbib and Aifantis, 1988), or an interface characteristic
length (Suo er af., 1991).

We have found that grain boundarics in polycrystals can act as both barriers to, and
sources of, shear bands. This is because, depending on the prevailing conditions, localization
may occur in the interior first, followed by localization at the interface, or, conversely,
localization may start at the interface followed by localization in the interior. A key
constitutive feature which makes this dual role of interfaces possible is the corner-like
behavior of plastic flow in crystals, In some metals, shear bands which arrest at grain
boundarics may nucleate interfacial microcracks which contribute to a brittle mode of
failure. More generally, the ability of shear bands to cross grain boundaries may markedly
influence the overall ductility of the solid.

A similar analysis of pressure-sensitive frictional materials reveals a mismatch in
oricntation between the shear bands in the interior and on the boundary of the solid. In
rectangular samples tested in plane strain compression, this mismatch results in dilation in
the interior band, which in turn causes a precipitous loss of bearing capacity of the specimen.
Whereas this phenomenon had been extensively documented in the experimental and
computational literaturc on granular media, a complete mechanistic explanation was
lacking. Drescher and Vardoulakis (1982) had surmised that the apparent softening of sand
samples in plane strain compression is related to shear banding, but the role of surface
“kink bands™ as the sources of dilatation in the interior band was not identified. In fact,
an infinite-band analysis carried out by Leroy and Ortiz (1989) shows that the failure to
consider the surface kink results in a severe underestimation of the load drop which follows
localization. The implication of these observations as regards constitutive modelling is
that the apparent softening which is observed experimentally cannot be construed as a
constitutive feature bul, instead. is the result of the complex structural response of the
sample.

It would appear that the usefulness of the stationary-wave analysis extends beyond the
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specific examples treated in this paper. The particular case of stationary body waves, the
study of which was pioneered by Hadamard (1903), Hill (1962), Mandel (1966) and Rice
(1977). has proven of great value in elucidating how various constitutive features influence
localization in the interior of solids. Much in the same spirit, the analysis of general
stationary waves provides an equally-useful tool for undertaking a systematic study of
localization instabilities under more general conditions.
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